MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines.
نویسندگان
چکیده
The MAGE-A, MAGE-B, and MAGE-C protein families comprise the class-I MAGE/cancer testes antigens, a group of highly homologous proteins whose expression is suppressed in all normal tissues except developing sperm. Aberrant expression of class I MAGE proteins occurs in melanomas and many other malignancies, and MAGE proteins have long been recognized as tumor-specific targets; however, their functions have largely been unknown. Here, we show that suppression of class I MAGE proteins induces apoptosis in the Hs-294T, A375, and S91 MAGE-positive melanoma cell lines and that members of all three families of MAGE class I proteins form complexes with KAP1, a scaffolding protein that is known as a corepressor of p53 expression and function. In addition to inducing apoptosis, MAGE suppression decreases KAP1 complexing with p53, increases immunoreactive and acetylated p53, and activates a p53 responsive reporter gene. Suppression of class I MAGE proteins also induces apoptosis in MAGE-A-positive, p53wt/wt parental HCT 116 colon cancer cells but not in a MAGE-A-positive HCT 116 p53-/- variant, indicating that MAGE suppression of apoptosis requires p53. Finally, treatment with MAGE-specific small interfering RNA suppresses S91 melanoma growth in vivo, in syngenic DBA2 mice. Thus, class I MAGE protein expression may suppress apoptosis by suppressing p53 and may actively contribute to the development of malignancies and by promoting tumor survival. Because the expression of class I MAGE proteins is limited in normal tissues, inhibition of MAGE antigen expression or function represents a novel and specific treatment for melanoma and diverse malignancies.
منابع مشابه
MAGE I Transcription Factors Regulate KAP1 and KRAB Domain Zinc Finger Transcription Factor Mediated Gene Repression
Class I MAGE proteins (MAGE I) are normally expressed only in developing germ cells but are aberrantly expressed in many cancers. They have been shown to promote tumor survival, aggressive growth, and chemoresistance but the underlying mechanisms and MAGE I functions have not been fully elucidated. KRAB domain zinc finger transcription factors (KZNFs) are the largest group of vertebrate transcr...
متن کاملMAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin.
PURPOSE The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with high...
متن کاملMAGE-C2 promotes growth and tumorigenicity of melanoma cells, phosphorylation of KAP1, and DNA damage repair.
Melanoma-associated antigen-encoding (MAGE) genes are expressed in melanoma and other cancers but not in normal somatic cells. MAGE expression is associated with aggressive tumor growth, poor clinical outcome, and resistance to chemotherapy, but the mechanisms have not been completely elucidated. In this study, we show that downregulation of MAGE-C2 in A375 melanoma cells and low-passage cultur...
متن کاملA cleaved form of MAGE-A4 binds to Miz-1 and induces apoptosis in human cells.
Gankyrin, a recently discovered oncoprotein, is a promising target for drug therapy because it is overexpressed in most hepatocellular carcinomas. Since gankyrin interacts with MAGE-A4, we made several MAGE-A4 mutants and assessed their effects on cell growth. We found that the C-terminal 107 amino acids of MAGE-A4 (MAGE-A4DeltaN1) induced p53-dependent and p53-independent apoptosis. MAGE-A4Del...
متن کاملTumor and Stem Cell Biology Mage-A Cancer/Testis Antigens Inhibit p53 Function by Blocking Its Interaction with Chromatin
The p53 tumor suppressor plays a major protective role in tumor prevention by coordinating changes in gene expression that lead to the elimination of cancer cells. Mage-A proteins comprise a family of metastasisassociated transcriptional regulators that potently inhibit p53 function. Here, we show that Mage-A interacts with 3 distinct peptides each of which is located within the DNA binding sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 20 شماره
صفحات -
تاریخ انتشار 2007